Inferring phenotypic evolution in the fossil record by Bayesian inversion
نویسنده
چکیده
—This paper takes an alternative approach to the problem of inferring patterns of phenotypic evolution in the fossil record. Reconstructing temporal biological signal from noisy stratophenetic data is an inverse problem analogous to subsurface reconstructions in geophysics, and similar methods apply. To increase the information content of stratophenetic series, available geological data on sample ages and environments are included as prior knowledge, and all inferences are conditioned on the uncertainty in these geological variables. This uncertainty, as well as data error and the stochasticity of fossil preservation and evolution, prevents any unique solution to the stratophenetic inverse problem. Instead, the solution is defined as a distribution of model parameter values that explain the data to varying degrees. This distribution is obtained by direct Monte Carlo sampling of the parameter space, and evaluated with Bayesian integrals. The Bayesian inversion is illustrated with Miocene stratigraphic data from the ODP Leg 174AX Bethany Beach borehole. A sample of the benthic foraminifer Pseudononion pizarrensis is used to obtain a phenotypic covariance matrix for outline shape, which constrains a model of multivariate shape evolution. The forward model combines this evolutionary model and stochastic models of fossil occurrence with the empirical sedimentary record to generate predicted stratophenetic series. A synthetic data set is inverted, using the Neighbourhood Algorithm to sample the parameter space and characterize the posterior probability distribution. Despite small sample sizes and noisy shape data, most of the generating parameter values are well resolved, and the underlying pattern of phenotypic evolution can be reconstructed, with quantitative measures of uncertainty. Inversion of a stratigraphic series into a time series can significantly improve our perception and interpretation of an evolutionary pattern. Bjarte Hannisdal. Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637. E-mail: [email protected] Accepted: 28 August 2006
منابع مشابه
Fossil biogeography: a new model to infer dispersal, extinction and sampling from palaeontological data
Methods in historical biogeography have revolutionized our ability to infer the evolution of ancestral geographical ranges from phylogenies of extant taxa, the rates of dispersals, and biotic connectivity among areas. However, extant taxa are likely to provide limited and potentially biased information about past biogeographic processes, due to extinction, asymmetrical dispersals and variable c...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملBayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملDivergence Time Estimation using BEAST v2.1.3
Estimating branch lengths in proportion to time is confounded by the fact that the rate of evolution and time are intrinsically linked when inferring genetic differences between species. A model of lineage-specific substitution rate variation must be applied to tease apart rate and time. When applied in methods for divergence time estimation, the resulting trees have branch lengths that are pro...
متن کاملComparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers
To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...
متن کامل